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Abstract. This work presents a formalization of the discrete model of
the continuum introduced by Harthong and Reeb [10], the Harthong-
Reeb line. This model was at the origin of important developments in
the Discrete Geometry field [21]. The presented formalization is based
on the work presented in [4] where it was shown that the Harthong-
Reeb line satisfies the axioms for constructive real numbers introduced
by Bridges [3]. A formalization of a first attempt for a model of the
Hartong-Reeb line based on the work of Laugwitz and Schmieden [12] is
also presented and analyzed. We hope that this work could help reasoning
and implementation of numeric computations in geometric systems.

1 Introduction

Dealing with geometric problems (geometric constraints solving, geometric mod-
eling) people are, finally, faced to computations that involve computer represen-
tation of real numbers. Due to their important impact, the studies about real
numbers in computer science are numerous and our purpose is not to surpass
them but to reactivate an efficient point of view that has been forgot for a
while [21].

This point of view was built in the eighties by J. Harthong and G. Reeb
and consists in a model of the continuum based over the integers that is the
Harthong-Reeb line. This model was at the origin of important developments in
the Discrete Geometry field [21]. And, at that time, the constructive content of
this model was neglected even if it was explicitly noted in Diener and Reeb’s
book [7].

In previous works [4] it was shown that the Harthong-Reeb line satisfies the
axioms for constructive real numbers introduced by Bridges [3]. However, the
Harthong-Reeb line construction is based on a nonstandard arithmetic of the



integer that was not explicitly built. To be short, starting with the naive integer
sequence (the one that you can enumerate; 1, 2, . . .), G. Reeb argues that it must
exists an integer ω that is greater than all naive integers. Using the compacity
theorem4 the from model theory [11], the existence of this nonstandard integer ω
is sufficient to deduce that it exists a nonstandard model of the integer arithmetic
with such nonstandard integer ω and then this model can be used to build the
Harthong-Reeb line.

Nevertheless, this nonstandard model of integer arithmetic is not built and,
in order to be put on computers, the Harthong-Reeb line needs a constructive
nonstandard model of integer arithmetic. A first attempt of such construction,
based on the Ω-numbers of Laugwitz and Schmieden [13], was made by some of
the authors with others in [5].

This work presents a first formalization of the Harthong-Reeb line using the
Coq proof assistant. It can be seen as a light counterpart of the seminal works
about the formalization of exact arithmetic [20, 9]. Our motivations to do this
work reside into the difficulties that we faced when showing that the Harthong-
Reeb line satisfies the axioms proposed by Bridges [3]. Unless proofs have been
read carefully we have no way to be sure that they were entirely correct. This
confidence problem of proofs is mainly due to the unusual mathematics that we
deal with. The handled arithmetic is in a nonstandard framework and the axioms
are in a constructive framework. So, it was not clear that handwritten proofs
didn’t contain subtle mistakes or imprecisions. Moreover, the formalization has
entailed a better understanding of how concepts and proofs are related to one
with others.

From a more practical point of view, the Harthong-Reeb line provides a rich
theoretical framework that allows to analyze a wide range of geometrical objects.
So, our formalization can also be thought as a model for geometric computations.
One main advantage of such model is that computation algorithms and reasoning
about these algorithms (e.g. to prove that they are correct) can be done in the
same framework. And we hope that this will help to the development of geometric
systems where computations are made using the Harthong-Reeb line. This goal
can be reasonably reached because the Coq proof assistant [6, 1] implements
a higher constructive logic and is also a programming language equipped with
inductive definitions and recursive functions. Therefore, it is the perfect tool to
carry out a constructive formalization.

This paper is organized as follows. In section 2, we formally describe in the
Coq a nonstandard model of arithmetic and build the Harthong-Reeb line HRω
on top of it. In Section 3, we prove HRω verifies Bridges’ Axioms which capture
what a constructive real line is. In Section 4, we study how to formalize and
prove correct the least upper bound property. In Section 5, we investigate the
limitations of the Ω-numbers of Laugwitz and Schmieden when it comes to being
an adequate model of the nonstandard arithmetic we consider. Finally, in Section
6, we discuss our results as well as alternative approaches to our formalization.

4 Roughly speaking it says that if for a theory with infinitely many axioms, each finite
subset of axioms has a model then the theory has a model.



2 A Parametric module to describe the Harthong-Reeb
line

In this section the parametric module that formalize the Harthong-Reeb line
is described. The ground idea of the Harthong-Reeb line is to introduce a non
trivial rescaling on the usual set of integers in order to get a discrete form of the
continuum. To do so a nonstandard arithmetic is used. This is described in the
next subsection.

2.1 Nonstandard Model of Arithmetic

We first have to specify the axiomatic numbers we shall use in this work as well
as their functions and their properties. We do that using a module type in Coq.
This can be viewed as an interface which, on the one hand, is the first step
in our construction of the Harthong-Reeb line and on the other hand, can be
implemented by a concrete datatype, operations and proofs of the axioms (as we
do in section 5). This module type contains the declaration of the basic objects
of the theory:

Parameter A:Type.

Parameter a0 a1 : A.
Parameter plusA multA divA modA : A -> A -> A.
Parameter oppA absA : A -> A.

Parameter leA ltA : A -> A -> Prop.

Parameter w:A.
Parameter lim:A->Prop.

Notations can be introduced to ease reading and writing of specifications.
This also allows to stay close to the way mathematicians would write.

Notation "x + y " := (plusA x y).
Notation "x * y " := (multA x y).
Notation "x / y " := (divA x y).

Notation "0" := (a0).
Notation "1" := (a1).
Notation "- x" := (oppA x).
Notation "| x |" := (absA x) (at level 60).
Notation "x ?<= y" := (leA x y) (at level 50).
Notation "x ?< y" := (ltA x y) (at level 50).

Then all the basic properties of A are expressed as axioms.



Parameter plus_neutral : forall x,0 + x = x.
Parameter plus_comm : forall x y, x + y = y + x.
Parameter plus_assoc : forall x y z, x + (y + z) = (x + y) + z.
Parameter plus_opp : forall x, x + (- x) = 0.

Parameter abs_pos : forall x, 0?<=|x|.
Parameter abs_pos_val : forall x, 0?<=x -> |x|=x.
Parameter abs_neg_val : forall x, x?<=0 -> |x|=-x.
[...]

Overall, we assume that A with the operations +,×,. . . is equipped with a
ring structure. This will allow to prove basic algebraic equations automatically
and also to perform some otherwise tedious simplications of expressions.

In addition, we assume that the order relations ? <= and ? < enjoy their
usual properties such as transitivity, regularity w.r.t operations such as addition,
etc. We also assume these relations are decidable by adding the following axiom
which states that forall x : A, either x? < 0 or x = 0 or 0? < x.

Axiom A0_dec : forall x, {x ?<0}+{x=0}+{0 ?< x}.

Even if axiomatic theories of nonstandard analysis, such as IST [18], are
available, we present here, in the spirit of some works of Nelson or Lutz [19, 15],
a weaker axiomatic which is well suited for our purpose.

First we introduce a new predicate lim over integer numbers: lim(x) ”means”
that the integer x is limited.

Parameter lim : A -> Prop.
Parameter w : A.

This predicate is external to the classical integer theory and its meaning directly
derives from the following axioms ANS1, ANS2, ANS3, ANS4 (and ANS5 which
will be introduced later):

ANS1. The number 1 is limited.

Parameter ANS1 : lim 1.

ANS2. The sum and the product of two limited numbers are limited.

Parameter ANS2a : forall x y, lim x -> lim y -> lim (x + y).
Parameter ANS2b : forall x y, lim x -> lim y -> lim (x * y).

ANS3. Non-limited integer numbers exist.

Parameter ANS3 : ~ lim w.

We simply assert that w is not limited (in Coq, ~ stands for logic negation).
ANS4. For all (x, y) ∈ A2 such that x is limited and |y| ≤ |x|, the number y
is limited.



Parameter ANS4 :
forall x, (exists y, lim y /\ | x | ?<= | y |)-> lim x.

For reading conveniences, we introduce the following notations [4]:

– ∀limx F (x) is an abbreviation for ∀x (lim(x) ⇒ F (x)) and can be read as
”for all limited x, F (x) stands”.

– ∃limx F (x) is an abbreviation for ∃x (lim(x) ∧ F (x)) and can be read as
”exists a limited x such that F (x)”.

We say that a formula or a proposition P is external when the predicate lim
occurs in P and internal otherwise. This distinction is necessary to know when
properties known for standard properties can be extended to the nonstandard
ones. In fact, when a property P is internal, i.e. when it does not use the pred-
icate lim, the extension of P to infinitely large numbers is immediate. This is
given by the following Overspill principle. But for external properties, we can-
not proceed in the same way. We need to introduce a new extension principle
as an axiom (called ANS5 in this paper). This principle states that the formula
which contains these external properties can be extended to infinitely large num-
bers, but that we do not know whether these infinitely large numbers verify this
property.

Proposition 1. (Overspill principle) Let P(x) be an internal formula such
that P(n) is true for all n ∈ Alim, n ≥ 0. Then, there exists an infinitely large
ν ∈ A, ν ≥ 0 such that P(m) is true for all integers m such that 0 ≤ m ≤ ν.

Parameter overspill_principle : forall P:A -> Prop,
(forall n:A, lim n /\ 0?<=n -> P n) ->
(exists v:A, ~lim v /\ 0?<=v /\ (forall m:A, 0?<=m /\ m ?<=v -> P m)).

Proof. The class C = {x ∈ A, x ≥ 0 ; ∀y ∈ [0, x] P(y)} is an internal set (i.e. a
classical set) containing Alim = {x ∈ A, x ≥ 0, lim(x)}. Since Alim is an external
set, the inclusion Alim ⊂ C is strict and leads to the result. �

In the same way, the application of an inductive reasoning on an external
formula could be illegitimate. For example, number 0 is limited, x+ 1 is limited
for all limited x. Nevertheless not all integers are limited. To improve the power
of our nonstandard tool, we have to add a special induction that fits with exter-
nal formulae. In the following principle which is our last axiom, P denotes an
internal or external formula:

ANS5. (External inductive defining principle): We suppose that

1. there is x0 ∈ Ap such that P((x0));
2. for all n ∈ Alim = {x ∈ A, x ≥ 0, lim(x)} and all sequence (xk)0≤k≤n in Zp

such that P((xk)0≤k≤n) there is xn+1 ∈ Ap such that P((xk)0≤k≤n+1).



Therefore, there exists an internal sequence (xk)k∈A,k≥0 in Zp such that, for all
n ∈ Alim, we have P((xk)0≤k≤n).
This principle means that the sequence of values xk for k limited can be pro-
longed in an infinite sequence (xk)k∈A,k≥0 defined for all integers. Saying that
this sequence is internal means that it has all the properties of the classical
sequences in usual number theory. Particularly, if Q(x) is an internal formula,
then the class {k ∈ A, k ≥ 0 ; Q(xk)} is an internal part of {k ∈ A, k ≥ 0}.

In Coq, we choose a slighly different and more convenient definition of ANS5:

Parameter ANS5 :
forall P :A -> Prop,
(forall u : forall n:A, lim n /\ 0 ?<= n -> A,
P (u 0 H0) ->
(forall n:A, forall Hn : lim n /\ 0 ?<= n,

(forall k:A, forall Hk:0 ?<= k /\ k ?<= n,
forall Hn1 : lim (n+1)/\0?<=(n+1),
P (u k (ANS4_special n k Hn Hk)) -> P(u (plusA n 1) Hn1))) ->

(* {u:A->A | ... } *)
sigT(fun v => forall n:A, forall Hn:lim n /\ 0?<= n,

forall k:A, forall Hk:0 ?<= k /\ k ?<= n,
P (v k) /\ v k = u k (ANS4_special n k Hn Hk))).

2.2 The system HRω.

Let us now give the definition of the system HRω. Introduced by M. Diener [8],
this system is the formal version of the so-called Harthong-Reeb line. In the next
section we prove that this system can be viewed as a model of the real line which
is partly constructive. In some sense, HRω is equivalent to R (see [4] for details).
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Fig. 1. An intuitive representation of HRω.

Accordingly to axiom ANS3, the construction starts by considering an in-
finitely large (non-limited) positive (i.e. ≥ 0) integer ω ∈ A. Our purpose is to
define a new numerical system such that all the elements are integers and, in
which ω is the new unit. Let us introduce the underlying set of this system.



Definition 1. The set HRω of the admissible integers considering the scale ω
is defined by: HRω = {x ∈ A ; ∃limn ∈ A,n ≥ 0 |x| < nω}.

This definition can be easily translated in Coq:

Definition P :=
fun (x:A)=> exists n:A, (lim n /\ 0 ?< n /\ (|x| ?<= n*w)).

Definition HRw := {x:A | P x}.

Note that {x:A|P x}, which is a convenient notation for (sig P), allows
to describe sets comprenhensively. Here it corresponds to the set of elements of
A which verify P . This corresponds to an inductive definition in Coq. It comes
together with two projections: proj1 sig, which returns a and proj2 sig which
returns a proof H of P a.

The set HRω is an external set. Moreover, it is an additive sub-group of
A. We provide HRω with the operations +ω and ∗ω, the ω-scale equality, the
ω-scale inequality relations (noted =ω and 6=ω) and the order relation >ω:

Definition 2. Let X and Y be any elements of HRω.

– X and Y are equal at the scale ω and we write X =ω Y when
∀limn ∈ N n|X − Y | ≤ ω.

– Y is strictly greater than X at the scale ω and we write Y >ω X when
∃limn ∈ N n (Y −X) ≥ ω.

– X is different from Y at the scale ω and we write X 6=ω Y when
(X >ω Y or Y >ω X)

– The sum of X and Y at the scale ω is X +ω Y := X + Y (like the usual
sum). For this operation, the neutral element is 0ω = 0 and the opposite of
each element Z ∈ HRω is −ωZ := −Z.

– The product of X and Y at the scale ω is X ×ω Y := bX.Yω c (different from
the usual one). The neutral element is 1ω := ω, and the inverse of each
element Z ∈ HRω such that Z 6=ω 0ω is Z(−1)ω :=

⌊
ω2

Z

⌋
.

Algebraic operations are defined on the integers of the set A onto with HRω
is built. Therefore we must ensure the result still belongs to HRω. For the sum,
it consists in proving the following lemma:

Lemma Pplus: forall x y:A, P x -> P y -> P ( x + y).

Then, the addition in HRω can be defined as follows:

Definition HRwplus (x y: HRw) : HRw :=
match x with exist xx Hxx =>
match y with exist yy Hyy =>
exist P (xx + yy) (Pplus xx yy Hxx Hyy)
end end.

All lemmas and formal definitions of the objects of Definition 2 are summa-
rized in Fig. 2.



Lemma Pplus : forall x y, P x -> P y -> P (x + y).

Definition HRwplus (x y: HRw) : HRw :=

match x with exist xx Hxx => match y with exist yy Hyy =>

exist P (xx + yy) (Pplus xx yy Hxx Hyy)

end end.

Lemma Popp : forall x, P x -> P (- x).

Definition HRwopp (x: HRw) : HRw :=

match x with exist xx Hxx => exist P (- xx) (Popp xx Hxx) end.

Definition HRwminus (x y : HRw) : HRw := HRwplus x (HRwopp y).

Lemma Pmult : forall x y, P x -> P y -> P (( x * y) / w).

Definition HRwmult (x y: HRw) : HRw :=

match x with exist xx Hxx => match y with exist yy Hyy =>

exist P ((xx * yy) / w) (Pmult xx yy Hxx Hyy)

end end.

Definition HRwequal (x y : HRw) : Prop :=

match x with exist xx Hxx => match y with exist yy Hyy =>

(forall n, lim n ->0 ?< n -> ( (n*|xx + (- yy)|) ?<= w))

end end.

Definition HRwgt (y x : HRw) : Prop :=

match y with exist yy Hyy => match x with exist xx Hxx =>

(exists n, lim n /\ 0 ?< n /\ (w ?<= (n*(yy+ (-xx)))))

end end.

Definition HRwge (a b : HRw) : Prop :=

(proj1_sig b) ?<= (proj1_sig a) \/ HRwequal a b.

Definition HRwdiff (x y : HRw) : Prop := HRwgt x y \/ HRwgt y x.

Lemma Pdiv : forall x , HRwdiff x HRw0 -> P ((w * w ) /(proj1_sig x)).

Definition HRwinv (x : HRw) (H: HRwdiff x HRw0) : HRw :=

exist P ((w * w ) / (proj1_sig x)) (Pdiv x H).

Fig. 2. Definitions of HRω operations in Coq

3 Bridges’ Axioms

In the 90’ Brigdes proposed in [3] an axiomatic definition of what is a constructive
real line. It is derived in three groups about algebraic structure (R1), ordered
set (R2) and the last group (R3) deals with special properties (see follow the



details). A field which satisfies these axioms is called an Bridges-Heyting ordered
field. In [4], the proof of that the Harthong-Reeb line with associated operations
and relations is a Bridges-Heyting ordered field is given. The particularity is that
this theorem is proved only using intuitionnistic logic. Let us just make some
remarks about these axioms.

3.1 R1. About algebrica structure

∀x, y, z ∈ HRω,

1. x+ω y =ω y +ω x
2. (x+ω y) +ω z =ω x+ω (y +ω z)
3. 0ω +ω x =ω x
4. x+ω (−ωx) =ω 0ω
5. x×ω y =ω y ×ω x
6. (x×ω y)×ω z =ω x×ω (y ×ω z)
7. 1ω ×ω x =ω x
8. x×ω x(−1)ω =ω 1ω if x 6=ω 0ω
9. x×ω (y +ω z) =ω x×ω y +ω x×ω z

This first group presents the attended properties about the two operations
+ω and ×ω. There is not any major difficulties to prove that HRω verifies these
axioms.

All the axioms of this group can be formally proven using the definitions of
the operations involved. These properties are expressed using Leibnitz equality
of Coq. They proceed by case analysis on the elements of HRω, destructuring
them into an element x of A and a proof H that P (x) holds. We present the proof
of the first one (commutativity of addition). Proving the terms HRwplus x y and
HRwplus y x are equal in HRω consists in not only proving the witnesses (in A)
are equal but also proving the proofs of the properties P (x+y) and P (y+x) are
equal. As what matters is only that P holds for the considered element, we use
the principle of proof irrelevance to show all proofs of the same property (e.g.
P (x)) are equal. This principle is expressed with the following axiom in Coq:

Axiom proof_irr :forall A:Prop, forall p p’:A, p=p’.

This well-known principle is consistent with Coq’s logic and therefore we can
safely add it to our formal description.

3.2 R2. Basic properties of >ω

∀x, y, z ∈ HRω,

1. ¬ (x >ω y ∧ y >ω x)
2. (x >ω y)⇒ ∀z (x >ω z or z >ω y)
3. ¬(x 6=ω y)⇒ x =ω y
4. (x >ω y)⇒ ∀z (x+ω z >ω y +ω z)



5. (x >ω 0ω ∧ y >ω 0ω)⇒ x×ω y >ω 0ω

All these properties can be proven in a very straightforward manner in Coq,
following the informal proofs of [4]. This definition of inequality is quite more
complex than the classical definition of inequality. It is explain by that the
decidability is not necessarily request. Because of the definition of inequality
on the Harthong-Reeb line, these axioms are easily provable. The proof often
derived from the properties of order on A. In fact we just need to assume that
the basic inequality on A is decidable. This hypothesis is not a problem for an
axiomatic definition of nonstandard arithmetic but, in practice there is some
problem, for example in the Laugwitz-Schmieden model, the inequality is not
decidable (see section 5). But, we try to obtain this quality with an other model
derived from the Type Theory of Martin-Lof [16, 17].

Links between orders in HRω and orders in A . There exists different correlations
between orders in HRω and in our non standard integers set A. We recall that,
in HRω the strictly great relation and the great or equal relation are defined
from the less or equal relation on A (y >ω x ≡ ∃limn ∈ A n (y − x) ≥ ω and
y >ω x ≡ ∀limn ∈ A n (y−x) 6 ω). We have the following correspondences for
all a, b ∈ HRω :

1. a > b implies a >ω b
2. a >ω b implies a > b

These properties are key properties of our development and were easily es-
tablished in Coq.

3.3 R3: Special Properties of >ω

The two last properties to prove to fulfil the requirements of Bridges’ axiom
system are the following ones:

1. Property of Archimedes: For each X ∈ HRω there exists a constructive
n ∈ A such that X < n.

2. The constructive least-upper-bound principle

Archimedes property can be easily formalized in Coq:

Lemma Archimedes : forall X:HRw, exists n:HRw, n >=w X.

Proof. Its proof is immediate because the elements x of HRω are such that there
exists a limited k ∈ N, |x| < kω. So the property can be proved using the integer
kω as a witness for n.

On the contrary, the proof of the least-upper bound principle is fairly tech-
nical and intricate. Therefore it deserves a whole section by itself.



4 Least upper bound

A subset S of HRω is the collection of elements of HRω which satisfies a given
property defined in the system. This property may be internal or external. Such
a subset S is bounded above relative to the relation ≥ω if there is b ∈ HRω such
that b ≥ω s for all s ∈ S; the element b is called an upper bound of S. A least
upper bound for S is an element b ∈ HRω such that

– ∀s ∈ S b ≥ω s (b is an upper bound of S);
– ∀b′ (b >ω b′)⇒ (∃s ∈ S s >ω b

′).

A least upper bound is unique: if b and c are two least upper bounds of S, then
we have ¬(b >ω c) and ¬(c >ω b); thus, according to the properties5 of the
relations >ω, ≥ω and = ω, we get c ≥ω b and b ≥ω c and then b =ω c.

The constructive least-upper-bound principle: Let S be a nonempty
subset of HRω that is bounded above relative to the relation ≥ω, such that for
all α, β ∈ HRω with β >ω α, either β is an upper bound of S or else there exists
s ∈ S with s >ω α; then S has a least upper bound.

The subset property is defined as a property, i.e. S x means x belongs to the
set S.

Proof. To formalize and prove this property correct in Coq we follow the proof
proposed in [4], which itself uses the heuristic motivation given by Bridges in [2].

4 sequences (sn, bn, αn, βn) These four sequences are defined in a mutually re-
cursive way :

Definition def_s_b_alpha_beta :
forall n:A, forall Hn:(lim n /\ 0 ?<= n),

{sn:HRw & {bn:HRw & {alphan:HRw &{betan : HRw &
S sn /\
upper_bound S bn /\
bn +w (-w sn) =w ((power two_third n Hn)*w (b0 +w (-w s0))) /\
HRwgt betan alphan /\
alphan=(two_third *w sn) +w (one_third *w bn) /\
betan=(one_third *w sn) +w (two_third *w bn)}}}}.

Computing the next terms sn and bn of the sequences depends on the four pre-
ceding terms (sn−1, bn−1, αn−1, βn−1) and also requires a proof of the property
βn−1 >ω αn−1. Thus we must keep track of this property in Coq during the
computations of (sn, bn, αn, βn). Therefore, we choose to specify the function
as precisely as possible when defining it, hence the numerous postconditions
characterizing the output (sn, bn, αn, βn) of the function.

Initially, we have (s0, b0, α0, β0) with an arbitrary element s0 of S, b0 an
upper bound of S, α0 = 2

3s0 + 1
3b0 and β0 = 1

3s0 + 2
3b0.

5 These properties are not completely trivial in intuitionistic logic.



This requires to assume in Coq that we can always choose an arbitrary el-
ement s of S. This corresponds to a form of choice which can be expressed as
follows:

Axiom choice : forall X:subset, (non_empty X) -> {x:HRw|X x}.

Given a non-empty subset X of elements of HRω, there exists an element x of
HRω for which (Px) holds.

Suppose for a given n, we have ((sn, bn, αn, βn)) with alphan <ω betan. Two
different cases can happen :

– First case βn is an upper bound of S. Then sn+1 = sn and bn+1 = βn.
– Second case there exists s such that (S s) and that αn <ω s. Then sn+1 = s

and bn+1 = bn + s− αn.

In both cases, αn+1 = 2
3sn+1 + 1

3bn+1 and βn+1 = 1
3sn+1 + 2

3bn+1.

Key properties Several key properties of the elements of the sequences are al-
ready expressed in the type of def b alpha beta. They hold by construction
(i.e. they are established using induction at the same time the actual sequences
are computed). All sn belongs to S, all bn are upper bounds of S, therefore for
any k and n, we have bk >ω sn. We also have the property that bn and sn are
connected by the relation

bn −ω sn =w (2/3)n × (b0−ω s0).

In addition to all the properties specified in the type of def b alpha beta,
we also need to establish that the sequence (sn) is increasing. Although this is
immediate from its mathematical definition, it still has to be formalized in Coq.
At the time of writing the paper, this is still a work in progress and no formal
proof has been achieved yet.

Thanks to axiom ANS5, the sequences can be extended to all integers, in-
cluding non-limited ones. In addition, the overspill principle allows to show the
existence of ν such that

min
0≤k≤ν

bk ≥ sν ≥ . . . ≥ s1 ≥ s0.

Details are available in the proof scripts.

A least upper bound of S : b := min
0≤k≤ν

bk

We simply follow the reasoning steps of the proof presented in [4] to prove:

– on the one hand, that b is an upper bound of S,
– on the other hand, that b is actually a least upper bound, i.e. that for all
b′ <ω b, there exists s ∈ S such that s >ω b′.



5 The Ω-numbers of Laugwitz and Schmieden

The Ω-numbers of Laugwitz and Schmieden permits the extension of a classi-
cal numerical system to a nonstandard one. Here is presented the extension of
natural numbers, it can be viewed as a model of the axiomatic definition of the
nonstandard arithmetic presented in part 3. In theirs papers [12–14], Laugwitz
and Schmieden extend the rational numbers and show that their system is equiv-
alent to classical real numbers (without limit consideration). In this section, we
will not describe the whole theory but only introduce the basic notions that
are essential to understand the Harthong-Reeb line. For more details about our
approach please refer to [5].

To extend a theory of integer numbers, Laugwitz and Schmieden introduce a
new symbol, Ω to the classical ones (0, 3, 9,+, /, ...). The only thing that we know
about it is that Ω verifies the following property named the Basic Definition and
called (BD) :

Definition 3. Let S(n) be a statement in N depending of n ∈ N. If S(n) is true
for almost n ∈ N, then S(Ω) is true.

We consider the expression ”almost n ∈ N” means ”for all n ∈ N from some level
N”, i.e. ”(∃N ∈ N) such that (∀n ∈ N) with n > N”. Since Ω can be substituted
to any natural number, it denotes an Ω-number which is the first example of
Ω-integer. Hence, each element a of this theory will be declined as a sequence
(an)n∈N.

Ω-numbers are defined in Coq as sequences indexed by natural numbers
(nat), whose values are relative integers (Z). The function Z of nat simply in-
jects natural numbers into Z.

Definition A := nat->Z.

Definition a0 : A := fun (n:nat) => 0%Z.
Definition a1: A := fun (n:nat) => 1%Z.

Definition w :A := fun (n:nat) => (Z_of_nat n).

To compare such Ω-numbers, we put the following equivalence relation:

Definition 4. Let a = (an)n∈N and b = (bn)n∈N be two Ω-numbers, a and b are
equal if it exists N ∈ N such that for all n > N , an = bn.

This is captured by the definition ext almost everywhere. The axiom ext which
expresses the extentionality principle for functions is used to directly prove that
2 Ω-numbers are equal.

Definition ext_almost_everywhere (u v:A) :=
exists N:nat, forall n:nat, n>N -> u n=v n.

Axiom ext : forall u v:A, (forall n:nat, (u n)=(v n)) -> u = v.



We can distinguish two classes of elements in this nonstandard theory:

- the class of limited elements: they are the elements α = (αn)n∈N which verify
∃p ∈ Z such that ∃N ∈ N, ∀n > N,αn < p (example: (2)n∈N ).

- the class of elements: infinitely large numbers, which are the sequences α =
(αn)n∈N such that limn→+∞αn = +∞

Immediately, we can verify that Ω is infinitely large, i.e. greater than every
element of N. Indeed, for p ∈ N, we apply (BD) to the statement p < n which
is true for almost n ∈ N; thus p < Ω for each p ∈ N. And Ω is the sequence
(n)n∈N.

The definition of the operations and relations between ZΩ , the set of Ω-
numbers are the following:

Definition 5. Let a = (an)n∈N and b = (bn)n∈N two Ω-numbers,

– a+ b =def (an + bn)n∈N and −a =def (−an) and a× b =def (an × bn)n∈N;

Definition plusA (u v:A) := fun (n:nat) => Zplus (u n) (v n).
Definition multA (u v:A) := fun (n:nat) => Zmult (u n) (v n).
Definition oppA (u:A) := fun (n:nat) => Zopp (u n).

– a > b =def [(∃N∀n > N) an > bn] and a > b =def [(∃N∀n > N) an > bn];

Definition leA (u v:A) :=
exists N:nat, forall n:nat, n>N -> Zle (u n) (v n).

Definition ltA (u v:A) :=
exists N:nat, forall n:nat, n>N -> Zlt (u n) (v n).

– |a| =def (|an|).

Definition absA (u:A) := fun (n:nat) => Zabs (u n).

Specificity of the theory Regarding the order relation, the usual properties true
on Z are not always verified on ZΩ . For instance

(∀a, b ∈ ZΩ) (a > b) ∨ (b > a) (1)

is not valid as we can see for the particular Ω-integers a = ((−1)n)n∈N and
b = ((−1)n+1)n∈N. Nevertheless, given two arbitrary Ω-integers a = (an) and
b = (bn), we have

(∀n ∈ N) (an > bn) ∨ (bn > an). (2)

Using (BD), we obtain (aΩ > bΩ) ∨ (bΩ > aΩ) and thus (1) since aΩ = a and
bΩ = b. Hence, there is a contradiction. To avoid it, we might admit that the
application of (BD) leads to a notion of truth weaker than the usual notion.

This shows that the Ω-numbers can not be a model of the theory presented
in Section 2. The main issue is the decidability property A0 dec of the order
relation which is obviously not provable in this setting.



Nonstandard axioms We define what two predicates std and lim: (std n) states
that an Ω-number n is standard and (lim n) that n is limited.

Definition std (u:A) :=
exists N:nat, forall n m, n>N -> m>N -> (u n)=(u m).

Definition lim (a:A) :=
exists p, std p /\ leA a0 p /\ ltA (absA a) p.

From these definitions, we can derive proofs of the axioms ANS1 to ANS4
presented in Section 2. It remains an open question to know whether ANS5
could be proved formally in Coq for Ω-numbers.

6 Discussion

In this paper, we have presented a work in progress which consists in formalizing
mathematical results obtained in the field of discrete geometry. We focused on
the paper of Chollet et al. [4] in which it has been proved that the Harthong-Reeb
line satisfies the Bridges’ axioms of constructive reals [3].

The results obtained so far show that it is tractable to transform the math-
ematical handwritten proof of [4] into a formal one in Coq. It was useful in the
sense that it makes the proof more precise and also ensures that there were no
hidden mistakes. So, this dramatically increases the confidence into the proofs.
In particular for the Least Upper Bound axiom where subtle notions are used.
Another obtained byproduct is that properties needed to complete the proofs
are well identified and, hence, we also know the one that are useless.

The formalization of an actual model of the abstract integers presented in
section 2 has also been investigated. TheΩ-numbers model developed in [5] based
on the work of Laugwitz and Schmieden [12] was a good candidate but they could
not be an actual model of the mandatory theory of nonstandard arithmetic. And,
the reasons of this defect are clearly identified (see section 5). However, this does
not say the Ω-numbers could not be used at all but, when using these numbers,
the properties that could not be obtained are clearly identified. In that sense
this helps the development of algorithms that use these numbers.

Figure 3 provides an insight of the size of the development. All proofs are
available online6 and shall be updated when new results are established.

Next steps to progress into this work are to complete the proof of the Least
Upper Bound axiom, to formalize an actual constructive model of our abstract
integers and to develop formal proofs of correctness of algorithms. For the mo-
ment the proof of the Least Upper Bound axiom is rather completed and what
is left is reasonably reachable. The formalization of an actual constructive model
of our abstract integers is currently faced to the problem to obtain a candidate
model of such integers, using the theory developed in [17] enthusiastic prelimi-
nary results had already been obtained by the authors of [4]. The last point is
currently not investigated.
6 http://galapagos.gforge.inria.fr



specifications proofs

Nonstandard arithmetic 135 60

HRω and Bridges’ axioms 330 1500

(including the least upper bound) 230 500

Laugwitz-Schmieden 90 275

Fig. 3. Key figures of our formal development in Coq
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