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Abstract. Multi-resolution analysis and numerical precisions problems
are very important subjects in fields like image analysis or geometrical
modeling. In the continuation of previous works of the authors, we expose
in this article a new method called the Ω-arithmetization. It is a process
to obtain a multi-scale discretization of a continuous function that is
solution of a differential equation. The constructive properties of the
underlying theory leads to algorithms which can be exactly translated
into functional computer programs without uncontrolled numerical error.
An important part of this work is devoted to the definition and the study
of the theoretical framework of the method. Some significant examples
of applications are described with details.
We consider that this paper is appropriate for the Theoretical Track.
Keywords: discrete geometry, nonstandard analysis, multi-resolution
analysis, constructive mathematics.

1 Introduction

In some previous works [1, 2], the authors have systematically studied a method
of discretization called the arithmetization method. Let us note that the principle
of this method was already at work in Reveillès’s studies that led successfully to
the definition of the discrete analytical line [3–5]. This arithmetization process
is a way to discretize a continuous curve solution of a differential equation. The
informal point of view [6, 7] that the real line R is the same thing as the discrete
line Z seen from far away is the intuitive basis of this method. The second idea
is to transform the usual approximation Euler scheme of the continuous solution
into an equivalent integer scheme.

A rigorous implementation requires a model of the set Z of integer numbers
together with a notion of infinitely large number (i. e. a scale on Z). In the
works already cited, such a model was introduced with the help of an axiomatic
version of nonstandard analysis. The major imperfection of this approach is that
the infinitely large integers which arise in the corresponding method have only an
axiomatic status. Consequently, in the applications with concrete computations,
it is impossible to give an exact numerical representation of these numbers; in
such a situation, we are forced to choose sufficiently large values in an arbitrary
manner1. Hence, this choice is only a metaphoric representation of the theoretical
framework.
1 For instance, for the figure of [2] page 2024, we took β = 50.



In the present paper, we propose to rebuild the arithmetization method on
the basis of the notion of Ω-numbers introduced by Laugwitz and Schmieden [8–
10]. Roughly speaking, an Ω-number (natural, integer or rational) is a sequence
of numbers of same nature together with an adapted equality relation. The
sets of Ω-numbers are extending the corresponding sets of usual numbers with
the added advantage of providing a natural concept of infinitely large integer
numbers: for instance, an Ω-integer α represented by a sequence (αn) of integers
is such that α ' +∞ if limn→+∞ αn = +∞ in the usual meaning. Clearly, these
infinite numerical entities are perfectly constructive.

After having chosen an Ω-integer ω such that ω ' +∞, we can define the
Harthong-Reeb line HRω which is a numerical system consisting of Ω-integers
with the additional property of being roughly equivalent to the real line system.
Not only the elements of HRω have a constructivity flavor, but we can show
that the structure of this system partially fits with the constructive axiomatic
developed by Bridges[11].

With this, it is possible to develop the Ω-arithmetization as an arithme-
tization method based on this new framework. The principle of this method is
unchanged and the resulting algorithm is formally the same. The new and crucial
facts are the following:

– Firstly, the algorithm operates on Ω-numbers in a complete constructive
way and consequently, in the applications, we can represent exactly all the
entities present in the theory.

– Secondly, the result of the algorithm appears to be a discrete multi-resolution
representation of the real function on which the method is applied.

From the first point, we deduce that the implementation of the method does
not lead to uncontrolled approximation errors. Even for the authors, the second
point was a (good) surprise.

Fig. 1. Graphical representations of the multi-resolution aspects of the Ω-
arithmetization of the real function X(T ) = 2T/5. (Full explanation in section 4).

In fact, this multi-resolution aspect is a normal consequence of theΩ-arithmeti-
zation: this is in relation with the very nature of the scaling parameter β of the
method (see section 4). Since β is now an infinitely large Ω-integer, it encodes



an infinity of increasing scales. The arithmetization process gives simultaneously
a discretization of the initial real function at each of these scales.

Since nowadays many developments in image analysis, geometrical modelling,
etc. comprise multi-resolution approaches and must deal with numerical precision
problems, the Ω-arithmetization is a new tool which has the interesting property
of taking into account these two aspects.

The paper is organized as follow: in part 2, we introduce the Ω-numbers
and study their general mathematical and logical properties, in part 3, we use
the Ω-numbers to define an Harthong-Reeb line HRω and finally, in part 4 we
present the Ω-arithmetization.

2 The Ω-numbers of Laugwitz and Schmieden

In this section we will present the notion of Ω-numbers introduced by Laugwitz
and Schmieden [8–10]. For the most part, we follow the presentations of these
authors, but on some points, we have introduced new developments and, from our
point of view, important distinctions. The Ω-numbers are nonstandard numbers
but the encompassing theory has two complementary characteristics: it seems
theoretically weaker than the usual versions of nonstandard analysis [12–14] but
it has an undeniable flavour of constructivity suggesting the possibility of explicit
and exact computations. The principal goal of Laugwitz and Schmieden was to
build a new approach to real analysis based only on the introduction of a set of
Ω-rational numbers which is an extension of the usual set Q. In our case and in
view of the arithmetization process, we are mainly interested in the Ω-integers
but we will occasionally use the Ω-rationals.

The first step is to extend a given formal theory T (unspecified but including
an elementary theory of integer and rational numbers) by introducing a new
number constant Ω and a new rule (BD) described thereafter. This leads to
a new theory T 〈Ω〉 in which we can form new statements depending on Ω for
which the truth is given by the following Basic Definition (BD):

Let S(n) be a statement of T depending of n ∈ N. If S(n) is true
for almost n ∈ N, then S(Ω) is true.

We specify that here and in all this article, the expression ”almost n ∈ N” means
”for all n ∈ N from some level”, i.e. ”(∃N ∈ N) such that (∀n ∈ N) with n > N”.
SinceΩ can be substituted to any natural number, it denotes anΩ-number which
is the first example of Ω-integer. Immediately, we can verify that Ω is infinitely
large, i.e. greater than every elements of N. Indeed, for p ∈ N, we apply (BD) to
the statement p < n which is true for almost n ∈ N; thus p < Ω for each p ∈ N.

The second step is to describe a world of mathematical objects which is
a realization of the extended theory T 〈Ω〉. For this purpose, we consider the
set of sequences of integers or rational numbers. On this set, we introduce the



equivalence relation R such that, for a = (an) and b = (bn)2, we have aRb if and
only if an = bn for almost n ∈ N. Then, we introduce the following definition:

Each equivalence class for the relation R is called an Ω-number.

In the general case, an Ω-number is also called an Ω-rational number. We agree
to identify each sequence of numbers a = (an) with the Ω-number equal to the
equivalence class of a. Given a sequence a = (an) such that an ∈ Z for all n ∈ N,
we can say that a = (an) is an Ω-integer. Finally, we decide that the symbol Ω
is the name of the particular Ω-number (n)n∈N. The following development will
show that these choices are coherent.

Let ZΩ be the set of Ω-integers, NΩ be the set of Ω-integers c = (cn) such
that cn > 0 for almost n ∈ N and QΩ be the set of Ω-rational numbers. We
consider the embedding i : Z→ ZΩ which associates to each p ∈ Z the constant
sequence of value p. An Ω-integer a = (an) is said standard if a belongs to the
image of the preceding embedding, i.e. if there exists p ∈ N such that an = p for
almost n ∈ N. Any sequence of integers f = (f(n)) is a map f : N→ Z which has
a natural extension f : NΩ → ZΩ defined by f(a) =def (f(an))n∈N for a = (an).
For each Ω-integer b = (bn), we can extend the underlying sequence to NΩ and
we obtain in particular bΩ = (bn) = b. Applying this property to (n)n∈N, we find
again Ω = (n)n∈N, which partly shows the consistency of our previous choice.
We do the same for the Ω-rational numbers.

Any operation or relation defined on Z (or Q) naturally extends to ZΩ (or
QΩ). For instance, for every Ω-numbers a = (an) and b = (bn) let us set:

– a+ b =def (an + bn)n∈N and −a =def (−an) and a× b =def (an × bn)n∈N;
– a > b =def [(∃N∀n > N) an > bn] and a > b =def [(∃N∀n > N) an > bn];
– |a| =def (|an|).

It is easy to check that (ZΩ ,+,×) is a commutative ring with the constant
sequence of value 0 as zero and the constant sequence of value 1 as unit. The
previous map i : Z → ZΩ is an injective ring homomorphism which allows to
identify Z with the subring of standard elements of ZΩ . From now, we identify
any integer p ∈ Z with the Ω-integer i(p) equal to the sequence of constant value
p.

For the implementation of an arithmetization process based on Ω-integers,
we need an extension of the euclidean division to the Ω-integers and of the floor
and the fractional part functions to the Ω-rational numbers.

– Given two Ω-integers a = (an) and b = (bn) verifying b > 0, there is an
unique (q, r) ∈ Z2

Ω such that a = bq + r and 0 6 r < b. Indeed, since bn > 0
from some level N ∈ N, we can set q = (qn) and r = (rn) where, for n > N ,
qn is the quotient of an by bn and rn is the remainder of this euclidean
division, and for n < N the values of qn and rn are arbitrary (for instance
0). We will use the usual notations a÷ b for the quotient q and amod b for
the remainder r.

2 Although this is not always indicated, in our sequences, the index n takes all the
values 0, 1, . . . in N.



– Given an Ω-rational number r = (rn), there is a unique brc ∈ ZΩ and a
unique {r} ∈ QΩ such that (0 6 {r} < 1) ∧ (r = brc+ {r}). Indeed, we can
choose brc = (brnc) and similarly {r} = ({rn}).

Regarding the order relation, the usual properties true on Z are not always
verified on ZΩ . For instance

(∀a, b ∈ ZΩ) (a > b) ∨ (b > a) (1)

is not valid as we can see for the particular Ω-integers a = ((−1)n)n∈N and
b = ((−1)n+1)n∈N. Nevertheless, given two arbitrary Ω-integers a = (an) and
b = (bn), we have

(∀n ∈ N) (an > bn) ∨ (bn > an). (2)

Using (BD), we obtain (aΩ > bΩ) ∨ (bΩ > aΩ) and thus (1) since aΩ = a and
bΩ = b. Hence, there is a contradiction. To avoid it, we might admit that the
application of (BD) leads to a notion of truth weaker than the usual notion.
Hence, we introduce an important logical distinction:

A statement is said weakly true in case it derives from (BD).

In contrast to the weak truth, we may use the terms of strong truth for the usual
truth. For instance, (1) is weakly true but not strongly true, and the weak truth
of (1) means exactly that (2) is (strongly) true. In the sequel, we will use the
following properties.

Proposition 1. The following statements are weakly true on ZΩ:
(1) ∀(x, y) ∈ Z2

Ω (x < y) ∨ (x ≥ y);
(2) ∀(x, y, z) ∈ Z3

Ω (x+ y > z)⇒ (2x > z) ∨ (2y > z).

Proof. Let x = (xn), y = (yn) and z = (zn). For each n ∈ N, we have

(xn < yn) ∨ (xn ≥ yn) and (xn + yn > zn)⇒ (2xn > zn) ∨ (2yn > zn)

Thus, we can apply (BD) and we get the two statements.

Let us remark that the first statement says that the order relation on ZΩ is
(weakly) decidable.

Returning to the Ω-rational numbers, we can check that (QΩ ,+,×,>) is a
commutative ordered field for the weak truth. Given two Ω-integers a = (an)
and b = (bn), if b 6= 0 in the weak meaning, then b has an inverse b−1 in QΩ

and a/b =def a× b−1 is an Ω-rational number. Conversely, if r ∈ QΩ is weakly
different from 0, then there is a unique pair (a, b) ∈ Q2

Ω with b > 0 such that
r = a/b; then, it is easy to check that we have the usual relations brc = a ÷ b
and {r} = (amod b)/b.

An Ω-rational number a = (an) is said limited in case there is a standard
p ∈ N such that |a| 6 p where |a| = (|an|); this means that |an| 6 p for almost
n ∈ N. Let Qlim

Ω be the set of limited Ω-rational numbers. In the same way, we
say that a is infinitely small and we write a ' 0 in case p|a| 6 1 for every p ∈ N.



For a, b ∈ QΩ , we write a ' b when a − b ' 0 and a . b when p(a − b) ≤ 1 for
every p ∈ N. ; it is easy to check that ' is an equivalence relation and that . is
an order relation on QΩ . This leads to the numerical system (Qlim

Ω ,',.,+,×)
which is, for Laugwitz and Schmieden [9], an equivalent of the classical system
of the real numbers (R,=,6,+,×).

3 An Harthong-Reeb line based on Ω-integers

The Harthong-Reeb line is a numerical line which is, in some meaning, both
discrete and continuous. For obtaining such a paradoxical space, the basic idea
is to make a strong contraction on the set Z such that the prescribed infinitely
large ω ∈ N becomes the new unit; the result of this scaling is a line which looks
like the real one. Historically, this system is at the origin of the definition of the
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Fig. 2. An intuitive representation of the Harthong-Reeb line.

analytic discrete line proposed by J.P. Reveillès [3, 4] in discrete geometry. For
a rigorous implementation of this idea, we must have a mathematical concept
of infinitely large numbers. In previous works [15, 1, 2] on this subject, this was
done with the help of an axiomatic version of nonstandard analysis in the spirit
of Internal Set Theory [13]. Our purpose in the present section is to define an
Harthong-Reeb line based on the notion of Ω-integers introduced in the previous
section. Our main motivation is to obtain a more constructive version of the
Harthong-Reeb line allowing an exact translation of the arithmetization process
into computer programs.

Although the definition has already been stated in the previous section, we
recall that an Ω-number a is infinitely large if, for all p ∈ N, we have p ≤ |a|.
If a is infinitely large and a > 0 we note a ' +∞. We already know that
Ω = (n)n∈N ' +∞. More generally, for a = (an), it is easy to check that
a ' +∞ if and only if limn→+∞ an = +∞.

In the present and the next section, the symbol ω denotes a fixed Ω-integer
such that ω ' +∞.



Let us remark that ω may be different from Ω. We only know that there is a
sequence (ωn) of natural numbers such that ω = (ωn) and limn→+∞ ωn = +∞.
Now, we are going to give the definition of the Harthong-Reeb line which results
of the scaling on ZΩ such that ω becomes the new unit.

Definition 1. We consider the following set

HRω = {x ∈ ZΩ , ∃p ∈ N, |x| ≤ pω}

and the relations, operations and constants on HRω described by the following
definitional equalities: for all (x, y) ∈ HR2

ω, we set

• (x =ω y) =def (∀p ∈ N) (p|x− y| ≤ ω);
• (x >ω y) =def (∃p ∈ N) (p(x− y) ≥ ω) ;
• (x 6=ω y) =def (x >ω y) ∨ (x <ω y);
• (x ≤ω y) =def (∀z ∈ HRω) (z <ω x⇒ z <ω y);
• (x+ω y) =def (x+ y) and 0ω =def 0 and −ω x =def −x;
• (x×ω y) =def ((x × y) ÷ ω) and 1ω =def ω and x(−1)ω =def (ω2 ÷ x) for
x 6=ω 0.

Then, the Harthong-Reeb line is the numerical system (HRω,=ω,≤ω,+ω,×ω).

We can say that HRω is the set of Ω-integers which are limited at the scale ω.
Note the unusual way of introducing separately the two order relations and the
non-equality relation; in fact, this procedure is quite traditional from a construc-
tive point of view.

Proposition 2. For every x = (xn) and y = (yn) in HRω, we have the follow-
ing equivalences:

(1) x =ω y ⇐⇒ ∀p ∈ N ∃Mp ∈ N ∀n ≥Mp p|xn − yn| ≤ ωn
(2) x >ω y ⇐⇒ ∃p ∈ N ∃Mp ∈ N ∀n ≥Mp p(xn − yn) ≥ ωn
(3) x ≤ω y ⇐⇒ ∀p ∈ N, p(x− y) ≤ ω

Proof. The points (1) and (2) results of the definition of the order relation ≤ on
ZΩ . We will only give the outline of a proof of (3).
Let us suppose that x ≤ω y. For every p ∈ N \ {0}, we consider zp =def x −
bω/pc. Since zp <ω x, we obtain zp <ω y. Thus, there is k ∈ N such that
k (y − x+ bω/pc) ≥ ω. Hence, for every p ∈ N

p(x− y) ≤ pbω/pc − pω/k = p (ω/p− {ω/p})− pω/k ≤ ω

Let us suppose now that p(x− y) ≤ ω for each p ∈ N. We consider an arbitrary
z ∈ HRω such that z <ω x. Thus, there is k ∈ N such that k(x − z) ≥ ω. We
obtain k(y − z) ≥ k(y − x) + ω and since 2k(y − x) ≥ −ω we get 2k(y − z) ≥ ω
and thus z <ω y.

Now, we want to show that the Harthong-Reeb line is equivalent to the
system of real numbers. In this context, the appropriate model for the real line
is the system (Qlim

Ω ,',.,+,×) of limited Ω-rational numbers of Laugwitz and



Schmieden described in the previous section. To this end, we introduce the two
following maps:{

ϕω : HRω → Qlim
Ω

x 7→ x/ω

}
and

{
ψω : Qlim

Ω → HRω
u 7→ (bωuc)

}
The proof of the following properties is straightforward.

Proposition 3. For every x, y ∈ HRβ and u ∈ Qlim
Ω , we have :

• x ≤ω y ⇒ ϕω(x) . ϕω(y);
• ϕω(x+ω y) ' ϕω(x) + ϕω(y);
• ϕω(x×ω y) ' ϕω(x)× ϕω(y);
• ϕω(0ω) ' 0 and ϕω(1ω) ' 1;
• x =ω y ⇔ ϕω(x) ' ϕω(y);
• ∀u ∈ Qlim

Ω ∃x ∈ HRω ϕω(x) ' u;
• ψω ◦ ϕω(x) =ω x and ϕω ◦ ψω(u) ' u.

We can summarize these properties by saying that ϕω is an isomorphism from
(HRω,=ω,≤ω,+ω,×ω) to (Qlim

Ω ,',.,+,×) and that ψω is the inverse isomor-
phism.

Since the Harthong-Reeb line HRω is a kind of model of the real line, it is
natural to wonder about the constructive content of this new numerical system.
With regards to the constructivism, we only recall that these mathematics are
characterized by the BHK-interpretation of the logical constants3 and, for more
precisions we refer to the excellent description given in [16]. Although we do
not develop this point in this article, we have shown that the Harthong-Reeb
line satisfied the axiomatic presentation of the constructive real line proposed
by Bridges [16, 17]. Of course, for HRω some of the axioms of Bridges are only
weakly true. The proof is long and technical and will appear in a future paper.

4 Arithmetization with Ω-integers

In the previous sections, we have shown that, given an infinitely large Ω-integer
ω, the corresponding Harthong-Reeb line HRω is a relatively constructive nu-
merical system which is roughly equivalent to the real numbers system. This
equivalence gives us a way to represent continuous entities (real numbers, real
function, etc.) into the discrete modelHRω. Moreover, this representation comes
with a strong computational content that allows to derive concrete algorithms.
To illustrate this, we give the arithmetization of a linear function and an expo-
nential function.

For this purpose, we will implement the arithmetization method presented
in [2]. The new point is that we are now working with the rich structure of the

3 The interpretation of Brouwer, Heyting and Kolmogorov which defines the intuition-
nistic logic.



Ω-integers. Hence, we consider a real function X : T 7→ X(T ) which is solution
of the Cauchy problem X ′ = F (T,X) with the initial condition X(A) = B.
Approximations of the function X are obtained using the Euler scheme with
integration step h and real variables Tk and Xk:T0 = A ; X0 = B

Tn+1 = Tn + h
Xn+1 = Xn + F (Tn, Xn)× h

(3)

The arithmetization method transfers the Euler approximation scheme to the
discrete world HRω. To this end, we choose ω such that there is β ' +∞ in ZΩ
with ω = β2 for the product of ZΩ and we consider that h = 1/β. Since the map
ψω : U 7→ bUωc is an equivalence between the real line and the Harthong-Reeb
line HRω, it is natural to introduce in (3) the change of variables tk =def bωTkc
and xk =def bωXkc. Then, neglecting some terms τ such that τ =ω 0, we get the
following scheme which is an arithmetic analogue of (3) with Ω-integer variables
tk, xk  t0 = a ; x0 = b

tn+1 = tn + β
xn+1 = xn + f(tn, xn)÷ β

(4)

where f(tn, xn) = bωF (tn/ω, xn/ω)c, a = bωAc and b = bωBc. Since the inte-
gration step is now equal to 1/β with β ' +∞, the discrete function whose graph
is the set of the points (tn, xn) is an exact4 representation of the initial real con-
tinuous function T 7→ X(T ). This discrete function suffers however from a major
imperfection: its domain is not a connected one at all, since tn+1−tn = β ' +∞.
In order to correct this defect, we perform the scaling:

ψβ ◦ ϕω : HRω −→ HRβ
x 7−→ bxω/βc = x÷ β.

whose meaning is that we observe now the discrete function at the intermediate
scale β. In order to compute the effect of this scaling, it is convenient to introduce
the following notation: for every x ∈ HRω we write x = x̃β + x̂, where x̃ =def

x÷ β and x̂ =def xmodβ. The operations ÷ and mod are the quotient and the
rest in the euclidean division of x by β in ZΩ . Using this notations, we see that
x̃ ∈ HRβ is the result of the scaling on x ∈ HRω. As a result, from (4) we obtain
the following Ω-arithmetization of the Euler Scheme at the intermediary scale β

t̃0 = a÷ β, x̃0 = b÷ β and x̂0 = bmodβ
t̃n+1 = t̃n + 1
x̃n+1 = x̃n + (x̂n + f̃n)÷ β
x̂n+1 = (x̂n + f̃n) modβ

(5)

where f̃n = f(t̃nβ+amodβ, x̃nβ+ x̂n)÷β and f(t, x) = bω F (t/ω, x/ω)c. Now,
the relevant variables are t̃k and x̃k (k = 0, 1, . . . ) while x̂k (k = 0, 1, . . . ) are
4 This discrete function contains the same information as the original continuous func-

tion



auxiliary variables that manage the approximation due to the euclidean division.
The important outcome of this scaling is that the discrete function whose graph
is the set of points (t̃k, x̃k) is now defined over a connected domain. This function
is the arithmetization of the initial real function X at the intermediate scale β.
It is a discrete and exact representation of X.

From a practical point of view, the Ω-integers used into the algorithm asso-
ciated to (5) are nothing else than a sequence of integers. Thus, implementation
into a computer program requires to manage objects that are intrinsically func-
tions from N to Z. Functional programming languages are well suited to deal
with such objects; our implementation uses the O’Caml language [18]. On the

(a) (b)

Fig. 3. Graphical representations of the Ω-arithmetization of an exponential function
(a) and a parabolic function (b).

figure 3, we give graphical representations of the arithmetization of the expo-
nential function t 7→ et/3 and the parabolic function t 7→ t2. The parameter β is
the identity map on N. The color encodes the level n in the Ω-integers: bluish
gray for n = 5, light pink for n = 10, pink for n = 20, red for n = 40 and black
for n = 200. The different discrete graphs are reduced to the same scale, so that
the pixel size is inversely proportional to the level n.

Consequently, the discretization obtained also appears to be a multi-resolution
analysis. Each level or scale is represented by the colored pixel of a given size
and this size is inversely proportional to the corresponding scale. This important
aspect follows from the nature of the scale parameter β ' +∞ as Ω-number.
This number is fundamentally a sequence (βn) of natural numbers such that
limn→+∞ βn = +∞. Then, the principle of the method applied to a real func-
tion X is to compute simultaneously, for every n ∈ N, a discrete approximation
and a scaling of ratio βn of this function X.

5 Conclusion

In the present paper, we have introduced the Ω-arithmetization as a method
which gives a discrete and multi-scale representation of a continuous function



solution of a differential equation. Due to the structure of the Ω-integers, we
obtain completely constructive algorithms which can be exactly translated into
functional computer programs. As a consequence, these programs do not gen-
erate any numerical error. Moreover, the result appears to be a new tool for a
multi-resolution analysis of discrete functions arising from continuous ones.

In future works on this subject, we plan to study systematically this form of
multi-resolution analysis and its applications to discrete geometry. In addition,
we intend to change our general theoretical framework; we want to move to the
formalism of constructive type theory of P. Martin-Löf [19, 20]. The first reason is
that this stark approach of mathematics and computer science is well suited for
both developing constructive mathematics and writing programs. Furthermore,
Martin-Löf has already developed a nonstandard extension of constructive type
theory [21] in which we dispose of infinitely large natural numbers. Hence, it
would be possible and interesting to build a multi-resolution analysis and more
generally a theory of scaling transformations in this formalism.
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235–244
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