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This article presents a synthetic and self contained presentation of the discrete model of the contin-
uum introduced by Harthong and Reeb [J. Harthong, Éléments pour une théorie du continu, Astérisque
109/110 (1983) 235–244.[1]; J. Harthong, Une théorie du continu, in: H. Barreau, J. Harthong (Eds.), La
mathématiques non standard, Éditions du CNRS, 1989, pp. 307–329.[2]] and the related arithmetization
process which led Reveillès [J.-P. Reveillès, Géométrie discrète, calcul en nombres entiers et algorith-
mique, Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France, 1991.[3]; J.-P. Reveillès, D. Richard, Back
and forth between continuous and discrete for the working computer scientist, Annals of Mathematics
and Artificial Intelligence, Mathematics and Informatic 16(1–4) (1996) 89–152.[4]] to the definition of a
discrete analytic line. We present then some basis on constructive mathematics [E. Bishop, D. Bridges,
Constructive Analysis, Springer, Berlin, 1985.[5]], its link with programming [P. Martin-Löf, Constructive
mathematics and computer programming, in: Logic, Methodology and Philosophy of Science, vol. VI, 1980,
pp. 153–175.[6]; W.A. Howard, The formulae-as-types notion of construction, To H.B. Curry: Essays on
Combinatory Logic, Lambda-calculus and Formalism, 1980, pp. 479–490.[7]] and we propose an analysis
of the computational content of the so-called Harthong–Reeb line. More precisely, we show that a suitable
version of this new model of the continuum partly fits with the constructive axiomatic of R proposed by
Bridges [Constructive mathematics: a foundation for computable analysis, Theoretical Computer Science
219(1–2) (1999) 95–109.[8]]. This is the first step of a more general program on a constructive approach
of the scaling transformation from discrete to continuous space.

© 2009 Published by Elsevier Ltd.

1. Introduction

This paper is part of a special issue of the discrete geometry in
computer imagery conference [9]. The defining moment that led to
the creation of this conference and to 20 years of renewed work in
the field of discrete geometry has been the definition of the discrete
analytical straight line by Reveillès [3]:

Given a, b, �, � ∈ Z, the discrete analytic line with slope (a, b), with
thickness � and origin � is the set of points (X,Y) ∈ Z2 such that

��aX − bY < � + �
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A new approach in discrete geometry, namely discrete analytical
geometry (DAG), has been a result of this formula and some of the
papers in this issue of Computer & Graphics are a direct result of this
work. The DAG has come a long way since these early works. Differ-
ent objects such as lines, circles, planes, hyperplanes, hyperspheres,
m-dimensional flats [10] have been studied. Recognition and recon-
struction algorithms proposed [11]. Few people, however, remem-
ber in which context this well know formula was first proposed [9].
At the end of the eighties, at the university of Strasbourg, Reeb and
Harthong developed a nonstandard model of the continuum based
on integers, the discrete-continuous Harthong–Reeb model [2]. This
arithmetical description of the continuum was first tested on the
numerical resolution of differential equations with integer numbers.
Indeed, the framework is especially well suited to solve differential
problems considering the historical context. Calculus, as initiated by
Leibniz and Newton, deals with the concept of infinitesimals that
are very small non-zero quantities. These infinitesimals have been
used to define the notion of derivatives. However, even if powerful
methods were developed by Leibniz and Newton, the notion of
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infinitesimal numbers was not well defined. These numbers, that are
smaller than any positive number but still different from zero, did not
satisfy usual properties of real numbers. For example, anymultiple of
an infinitesimal number remains an infinitesimal number. This does
not satisfy the Archimedean property: if x and y are two numbers
such that x < y then there exists an integer n such that y <n.x. Some
paradoxes, such Zeno's paradox [12], also questioned the foundations
of calculus. In the 19th century, this led to the development of what
is now the classical approach to calculus, based on the notion of
limits defined on the continuum of real numbers. Later, in the mid of
the 20th century an alternative approach, the nonstandard analysis
(NSA), was proposed which adds infinitesimals and infinitely large
numbers to the real numbers.

Ironically, considering the differential origin of the DAG theory,
one of the difficulties the development of discrete geometry faces
today is the difficulty of correctly defining and using differential con-
cepts. Our claim is that these difficulties come from a lack of theoreti-
cal foundations and effectivemethods (algorithms) to compute them.
This is our motivation to reinvestigate the original NSA approach
of discrete geometry. We propose, however, to extend these early
works by looking at it from the constructive point of view, adding a
computational context. As Georges Reeb himself noted [13,14], his
model is strongly linked to the intuitionistic interpretation of clas-
sical mathematics. This has, however, never been really fully inves-
tigated although it represents a way to integrate the algorithmic
paradigm to the continuum theory [15]. In this paper, our will is to
take a look into a formal and constructive approach for discrete ge-
ometry using NSA. We also provide some insight in the papers of
Harthong [1,2], Diener and Reeb [13], Diener [16] and Reveillès and
Richard [4]. Many of these papers are hard to find and more of them
are written in French.

The present article extends the paper proposed during the DGCI
2008 conference [9] by adding new examples, describing in more de-
tails the analysis of the constructive properties of the model and the
general arithmetization process that was only partially presented. In
Section 2, we describe the Harthong–Reeb line and the nonstandard
axiomatic we need to describe the infinitely small and big numbers
for our nonstandard framework. Section 3 presents the arithmeti-
zation of differential equations based on the Euler scheme. We il-
lustrate how this works in practice with two examples. One is the
arithmetization of the simple equation y′ =�, that led Reveillès to his
well known discrete analytical line definition and, thus, to the dis-
crete analytic geometry theory [4]. In Section 4, we show that a suit-
able version of the Harthong–Reebmodel of the continuumpartly fits
with the constructive axiomatic of R proposed by Bridges [8]. Thus,
this Harthong–Reeb model can be viewed as a partly constructive
discrete-continuousmodel of the real line (called the Harthong–Reeb
line). This is the first step in the project of giving theoretical and
algorithmic definitions of scaling deformations like the transforma-
tion of a discrete space like Z into a continuous space like R. We
will then conclude in Section 5.

2. What is the Harthong–Reeb line?

In this section, we show that a theory of continuum equivalent
to the real line can be developed using only integers [1,2,4,13,16].
The ground idea of the Harthong–Reeb model is to introduce a non-
trivial scale on the usual set of integers in order to get a discrete
form of the continuum. NSA is the paradigm that can be used to this
purpose.

2.1. Bases of NSA on N and Z

Even if axiomatic theories of NSA, such as IST [17], are available,
we present here, in the spirit of someworks of Nelson or Lutz [18,19],

Fig. 1. Intuitive representation of the class Zlim of the limited integers and the
classes Z+∞ and Z−∞ of non-limited integers.

a weaker axiomatic which is well suited for our purpose. First, we
introduce a new predicate lim over integer numbers: lim(x) “means”
that the integer x is limited (Fig. 1). This predicate is external to the
classical integer theory and its meaning directly derives from the
following axioms ANS1, ANS2, ANS3, ANS4 (and ANS5 which will be
introduced later):

ANS1. The number 1 is limited.
ANS2. The sum and the product of two limited numbers are limited.
ANS3. Non-limited integer numbers exist.
ANS4. For all (x, y) ∈ Z2 such that x is limited and |y|� |x|, the
number y is limited.

For reading conveniences, we introduce the following notations [9]:

• ∀limx F(x) is an abbreviation for ∀x (lim(x) ⇒ F(x)) and can be read
as “for all limited x, F(x) stands”.

• ∃limx F(x) is an abbreviation for ∃x (lim(x) ∧ F(x)) and can be read
as “exists a limited x such that F(x)”.

Here we have to insist on the fact that these rules are added to every
classical property (axioms or theorems) over integer numbers. Ev-
erything that was classically true remains true. We simply improve
the language by a syntactic enrichment. These first rules imply that
N is split into two classes, the class Nlim := {0, 1, . . .} of natural lim-
ited integers (closed by arithmetical operations), and the class of nat-
ural non-limited integers (a non-limited integer is bigger than every
limited integer). These non-limited integers are said to be infinitely
large. These first axioms allow the development of an explicit and
rigorous calculus on different scales.

Let us add some technical but important remarks. Amathematical
property or formula which does not contain the new predicate lim
is called an internal formula. For example, the formula x + 1 > x is
internal. An internal formula is, therefore, a classical formula on
numbers. In contrast, an external formula uses explicitly the new
predicate lim; for example, lim(x) or ∀limx, y < x are external formulae.
Since everything that was true remains true for all internal formula
P(x), we can build the set P = {x ∈ N;P(x)} which possesses the
classic properties of subsets of N; for example, if P is not empty and
is upper bounded, then P has a maximal element. This is no longer
true for an external property. For instance, if we consider the external
property lim(x), the class Nlim={x ∈ N; lim(x)} of limited integers is a
non-empty bounded part which cannot have a bigger element since
x + 1 is limited for all limited x. A class of numbers defined by an
external property which cannot be a set of numbers in the classical
meaning is called external set. Hence, Nlim is an external part of N.
Dealing with external sets that are not classical (internal) sets gives
birth to a new process of demonstration called the overspill principle.

Proposition 1 (Overspill principle). Let P(x) be an internal formula
such that P(n) is true for all n ∈ Nlim. Then, there exists an infinitely
large � ∈ N such thatP(m) is true for all integersm such that 0�m��.

Proof. The class A = {x ∈ N;∀y ∈ [0, x]P(y)} is an internal set (i.e.
a classical set) containing Nlim. Since Nlim is an external set, the
inclusion Nlim ⊂ A is strict and leads to the result. �
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In the same way, the application of an inductive reasoning on
an external formula can be illegitimate. For example, number 0 is
limited, x+1 is limited for all limited x. Nevertheless not all integers
are limited. To improve the power of our nonstandard tool, we have
to add a special induction that fits with external formulae. In the
following principle which is our last axiom, P denotes an internal
or external formula:

ANS5. (External inductive defining principle): We suppose that

(1) there is x0 ∈ Zp such that P((x0));
(2) for all n ∈ Nlim and all sequence (xk)0� k�n in Zp such that

P((xk)0� k�n) there is xn+1 ∈ Zp such that P((xk)0� k�n+1).

Therefore, there exists an internal sequence (xk)k∈N in Zp such that, for
all n ∈ Nlim, we have P((xk)0� k�n).

This principle means that the sequence of values xk for k limited
can be prolonged in an infinite sequence (xk)k∈N defined for all in-
tegers. Saying that this sequence is internal means that it has all the
properties of the classical sequences in usual number theory. Partic-
ularly, if Q(x) is an internal formula, then the class {k ∈ N;Q(xk)} is
an internal part of N.

2.2. The system HR�

Now we are going to give the definition of the system HR�.
Introduced by Diener [16], this system is the formal version of the
so-called Harthong–Reeb line. In the next section, we prove that this
system can be viewed as a model of the real line which is partly
constructive.

Accordingly to axiomANS3, the construction starts by considering
� ∈ N is an infinitely large (non-limited) integer. Our purpose is
to define a new numerical system such that all the elements are
integers and in which � is the new unit. Then, we introduce the
underlying set of this system.

Definition 2. The set HR� of the admissible integers considering
the scale � is defined by: HR� = {x ∈ Z; ∃limn ∈ N|x| <n�}.

The set HR� is an external set. Moreover, it is an additive sub-
group of Z. We provide HR� with the operations +� and ∗�, the
�-scale equality, the �-scale inequality relations (noted =� and ��)
and the order relation >�.

We note +,−, ., /, > ,= the usual operations and order relation in
Z (Fig. 2).

Definition 3. Let X and Y be any elements of HR�.

• X and Y are equal at the scale � and we write X=�Y when ∀limn ∈
N n|X − Y|��.

• Y is strictly greater than X at the scale � and we write Y>�X when
∃limn ∈ N n(Y − X)��.

• X is different from Y at the scale � and we write X ��Y when
(X>�Y or Y>�X).

• The sum of X and Y at the scale � is X+�Y := X+Y (like the usual
sum). For this operation, the neutral element is 0� = 0 and the
opposite of each element Z ∈ HR� is −�Z := −Z.

• The product of X and Y at the scale � is X×�Y := �X.Y/�� (different
from the usual one). The neutral element is 1� := �, and the
inverse of each element Z ∈ HR� such that Z ��0� is Z(−1)� :=
��2/Z�.

Let us give an informal description of HR�. It is easy to see that
X = Y implies X=�Y but that the reverse is not true. It is a little less
obvious to see that we have ∀X ∈ HR�, lim(X) implies X=�0 but not

Z

R

10 ω

HRω

10

1ω0

Fig. 2. An intuitive representation of HR� .

the reverse. For instance, �√�� is not limited because �= (
√

�)2 but
�√��=�0 since ∀limn ∈ N,n.�√�� <�. Moreover ���� is an element
of HR� and ����=����� + 150=����� + �√��. But �2 /∈HR�
because there does not exist any limited integer n such that �2 <n�.

Although the elements of HR� are integers, we are going to
see that the Harthong–Reeb line is equivalent to the system (Rlim,�
,�,+,×) where Rlim is the set of limited real numbers, x � y means
(∀limn ∈ N\{0}|x−y| <1/n) and x�ymeans (x�y) or (x � y). Since, for
every X ∈ HR� and x ∈ Rlim we have X/� ∈ Rlim and ��x� ∈ HR�,
we consider the two maps{

�� : HR� → Rlim

X�X/�

}
and

{
	� : Rlim → HR�

x���x�

}

While �� is clearly additive (Z-linear), it is not the case for 	�. This
is the source of some technical difficulties not always well treated
in the literature.

Then, for every X,Y ∈ HR� and x ∈ Rlim, we have the following
properties:

• X��Y ⇒ ��(X)���(Y);
• ��(X+�Y) � ��(X) + ��(Y);
• ��(X×�Y) � ��(X) × ��(Y);
• ��(0�) � 0 and ��(1�) � 1;
• X=�Y ⇔ ��(X) � ��(Y);
• ∀y ∈ Rlim∃X ∈ HR� ��(X) � y;
• 	� ◦ ��(X)=�X and �� ◦ 	�(x) � x.

These properties are summarized by saying that�� is an isomorphism
from (HR�,=�, ��,+�,×�) to (Rlim,�,�,+,×) and that 	� is the
inverse isomorphism.

3. The arithmetization of the Euler scheme

In this section, we test theHR� line as a place wherein calculus
can be performed. Since HR� is equivalent to Rlim, each entity in
the continuous world Rlim is represented by an equivalent one in
the discrete world HR�. We call 	�-arithmetization this process
of transfer. For instance, each limited real number a is represented
by 	�(a) = ��a� in HR�. Similarly, a map f : x�f (x) defined on
a part of Rlim and with values in Rlim is represented by the map
F : X�F(X) := ��f (X/�)� defined on a part ofHR� and with values
in HR�.

HR�
F−−−−−−→ HR�

��

⏐⏐⏐⏐⏐⏐⏐�
�⏐⏐⏐⏐⏐⏐⏐ 
�

Rlim
f−−−−−−→ Rlim

For a two variables map g : (x, y)�g(x, y) the same process gives the
discrete equivalent G : (X,Y)���g(X/�,Y/�)�.
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The main disadvantage of this direct 	�-arithmetization method
is that it is based on the real numbers on which the calculations are
made before coming back toHR�. On the contrary, our purpose is to
stay in the discrete world of HR� without using any real numbers.
A better idea for defining a discrete equivalent of a continuous object
is to find an 	�-arithmetization of a construction method of this
object. That is what we are going to do with the Euler scheme as a
process for constructing a solution of a differential equation. This is
a typical idea of Reeb who, at this time, was simply trying to make
simulations of the Moiré sensing on a personal computer.

3.1. Arithmetization at the scale �

We consider a function x : t�x(t) which is a solution of a Cauchy
problem{
x′ = f (t, x)

x(a) = b

where f is a C1 map, the constants a, b are in Rlim, and the compo-
nents x and t are defined on intervals in Rlim. We know that we can
get a good approximation of the function x by using the following
Euler scheme with step 1/�⎧⎪⎨⎪⎩
t0 = a, x0 = b

tn+1 = tn + 1/�

xn+1 = xn + 1/�f (tn, xn)

(1)

The real variables tn and xn are such that xn is an approximation of
x(tn) and the error |x(tn)−xn| is getting smaller when the step 1/� of
themethod decreases towards 0. Thus, in our context, it is interesting
to consider 1/� � 0. Moreover, since our goal is to find an equivalent
scheme inHR� with integer variables, it is advantageous to assume
that � is a divisor of �. Finally, we suppose that

∃�,� ∈ N � = �� and � � +∞ (2)

What would be a	�-arithmetization of the continuous Euler scheme
(1)? It is an iterative scheme with integer variables and constants in
HR� like⎧⎪⎨⎪⎩
T0 = A, X0 = B

Tn+1 = Tn + C

Xn+1 = Xn + �(�, Tn,Xn)

(3)

where A, B, C and the function � are such that, if we go back to Rlim
using the real variables tn := Tn/� and xn := Xn/�, we get a scheme
infinitely close to (1), that is to say, an algorithm of the form⎧⎪⎨⎪⎩
t0 = a′, x0 = b′

tn+1 = tn + 1/�

xn+1 = xn + 1/�f ′(tn, xn)

where a′ � a, b′ � b and f ′(t, x) � f (t, x) for t, x ∈ Rlim.
So let us now show how we can choose the components A, B, C

and � of (3). It is easy for the first three terms: A := ��a�, B := ��b�
1 and C := �. As an arithmetical translation of the term 1/� f (tn, xn),
it is quite natural to take

�(�, Tn,Xn) := �(1/�)��f (Tn/�,Xn/�)�� = F(Tn,Xn) ÷ �

where F(Tn,Xn) := ��f (Tn/�,Xn/�)� is an arithmetization of f (tn, xn)
and ÷ denotes the arithmetic operation which gives the euclidian

1 Of course, we suppose that these two elements are already known without
any calculus in R. This knowledge may be the result of a preceding arithmetization
process.

quotient. Of course, we suppose we have already defined a 	�-
arithmetization F of f . Thus, we consider the following scheme:⎧⎪⎨⎪⎩
T0 = A, X0 = B

Tn+1 = Tn + �

Xn+1 = Xn + F(Tn,Xn) ÷ �

(4)

where A := ��a�, B := ��b� and F(Tn,Xn) := �� f (Tn/�,Xn/�)�.

Proposition 4. Adding the condition � � +∞ to the hypothesis (2), the
discrete scheme (4) is an 	�-arithmetization of the continuous Euler
scheme (1).

Proof. Since�� is additive, it is sufficient to show that��(F(Tn,Xn)÷
�) may be written 1/�f ′(tn, xn) with the condition f ′(tn, xn) � f (tn, xn).
By applying twice �u� = u − {u}, since

��(F(Tn,Xn) ÷ �) = 1
�

(⌊ ��f (tn, xn)�
�

⌋)
we get

��(F(Tn,Xn) ÷ �) = 1
�

(
�f (tn, xn)

�
− {�f (tn, xn)}

�
−
{ ��f (tn, xn)�

�

})
that is to say

��(F(Tn,Xn) ÷ �) = 1
�

(
f (tn, xn) − {�f (tn, xn)}

�
− 1

�

{ ��f (tn, xn)�
�

})
Since � and � are infinitely large, we get the result.

3.2. Interpretation at an intermediary scale

We are now looking at the solution (Tn,Xn) of (4). It appears that
this solution is a sequence of points very distant from each other
because Tn+1−Tn=� � +∞. In order to get the points closer together
for this sequence, we can observe the solution at an intermediate
scale.

We have already two intermediate scales: � and � such that � =
��. Each of these scales provide simplifications in various lines of
the scheme. One way of having more simplifications is to suppose
that �=�. Thus, we make a further assumption which is compatible
with the previous ones (2)

∃� ∈ N � = �2 and � � +∞ (5)

More formally, an element X ∈ HR� is interpreted to an interme-
diary scale � as an element of HR� by the map

	� ◦ �� : HR� −→ HR�

X � X ÷ �

In order to get the interpretation of scheme (4) at the intermediate
scale � we introduce the following notation: for every X ∈ HR�

X = X̃� + X̂ (6)

where X̃ := X÷� and X̂ := X mod �, respectively denote the quotient
and the remainder in the Euclidean division of X by �. Using decom-
position (6) for each component, we get the 	�-arithmetization of
Euler scheme (1) computed at the scale � = �2 and interpreted at the
intermediary scale �:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T̃0 = A ÷ �, X̃0 = B ÷ � and X̂0 = B mod �

T̃n+1 = T̃n + 1

X̃n+1 = X̃n + (X̂n + F̃n) ÷ �

X̂n+1 = (X̂n + F̃n) mod �

(7)
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Fig. 3. The arithmetization of t��et computed at the scale �2 and interpreted at
the scale � for � = 50 and � = 3/200, 9/200, 15/200, 21/200, 27/200.

where A = ��2a�, B = ��2b� and

F̃n = F (̃Tn� + A mod �, X̃n� + X̂n) ÷ �

=
⌊
�f

(
T̃n� + A mod �

�
,
X̃n� + X̂n

�

)⌋
÷ �.

In scheme (7), we have to understand that the T̃k and the X̃k are
the relevant variables and that the X̂k are auxiliary variables. Now,
the set of pairs (̃Tk, X̃k) is the graph of a discrete function T�X(T)
defined on an interval I of Z. We will say that this function is the
	�-arithmetization of the initial function t�x(t), computed at the scale
�2 and interpreted at the scale �.

3.3. Examples of arithmetization

3.3.1. The arithmetization of the exponential function (Fig. 3)
The exponential function x��ex is the solution of the following

Cauchy problem:{
x′ = x

x(0) = �

The function f of the general theory is now the projection (t, x)�x.
Thus, we get

F (̃Tn� + A mod �, X̃n� + X̂n) = X̃n� + X̂n so F̃n = X̃n

Since the initial condition is x(0)=�, we have A=0 and B=���2�. Con-
sequently, the arithmetization of the corresponding Euler scheme
computed at the scale �2 and interpreted at the scale � is the fol-
lowing:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T̃0 = 0, X̃0 = ���2� ÷ � and X̂0 = 0

T̃n+1 = T̃n + 1

X̃n+1 = X̃n + (X̃n + X̂n) ÷ �

X̂n+1 = (X̃n + X̂n) mod �

(8)

This is precisely the kind of algorithm proposed by Reeb. This algo-
rithm defines a discrete function T�E(T) for T�0 in HR� which
is an arithmetization of the exponential function: E(T)/� � eT/� for
T ∈ HR� and et � E(��t�)/� for t ∈ Rlim.

3.3.2. The origin of the discrete analytical Reveillès straight line (Fig. 4)
As pointed out in the Introduction, the previous point of view

leads to the definition of the well known discrete analytical straight

Fig. 4. The 	�-arithmetization of the line 15y = ax computed at the scale �2 and
interpreted at the scale � for � = 50 and a = 4, 7, 11, 14.

line defined by Reveillès [3,4]. The discrete analytical straight line
of Reveillès is a fundamental object that led to 20 years of renewed
research in the discrete geometry community. We now show how
this definition is a consequence of the 	�-arithmetization of the
Euler scheme applied to the elementary function t�ct + d(�).

The 	�-arithmetization of the continuous Euler scheme corre-
sponding to (�), computed at the scale �2 and interpreted at the
scale �, is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T̃0 = 0, X̃0 = ��2d� ÷ � and X̂0 = ��2d� mod �

T̃n+1 = T̃n + 1

X̃n+1 = X̃n + (X̂n + K) ÷ �

X̂n+1 = (X̂n + K) mod �

(9)

where K is the integer ��2c� ÷ � ∈ HR�. The set of pairs (̃Tk, X̃k) is
the graph of a discrete function T�X(T) defined on an interval I of Z.

Proposition 5. For all T ∈ I, we have X(T) = �C�T + D�� where C� :=
(��2c� ÷ �)/� and D� := ��2d�/�.

Proof. We introduce the variable Xn := X̃n�+X̂n with values inHR�

where � = �2. Then, we have X̃n = Xn ÷ � and we get the inductive
relation Xn+1 = Xn + K. Thus, for each n we have Xn = X0 + nK. Since
K = ��c� ÷ � and

X0 = X̃0� + X̂0 = (��d� ÷ �)� + ��d� mod � = ��d�

we get the expression Xn = n(��c� ÷ �) + ��d� and finally

X̃n =
⌊
n(��c� ÷ �) + ��d�

�

⌋

Since T̃n = n, the proof is done. �

The elements of the graph of the function T�X(T) are the points
with integer coordinates which are on or just below the continuous
straight line �� with equation x = C�t + D�. The slope of �� is C� =
(��2c� ÷ �)/� � c and for t = 0 we have x=D� = ��2d�/� � �d. Thus,
for d = 0 the line �� is infinitely close to the initial line.

Finally, it is easy to check that the graph of the function T��C�T+
D�� is the set of (T,X) ∈ Z2 such that

0�KT − �X + �D� ��
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This kind of inequalities is at the origin of the concept of analytic
discrete line introduced by Reveillès:

Given a, b, �, � ∈ Z, the discrete analytic line with slope (a, b), with
thickness � and origin � is the set of points (X,Y) ∈ Z2 such that

��aX − bY < � + �

4. The constructive part of the Harthong–Reeb line

In the previous section, we introduced the Harthong–Reeb line
HR�, we described the 	�-arithmetization process and the link
with discrete analytic geometry. Up to now, the algorithmic part
of this theory of the continuum was neglected. With the purpose
of warranting the correctness of the algorithms developed in this
framework, we are going to study its computational context.

4.1. Constructive mathematics, proofs and programs

In this part, we will briefly introduce constructive mathematics
and shortly draw the links with programming. For interested readers
more details can be found in [6,8,20–22].

As explained by Martin-Löf in [6]:

The difference between constructive mathematics and program-
ming does not concern the primitive notions [. . .] they are es-
sentially the same, but lies in the programmer's insistence that
his programs be written in a formal notation [. . .] whereas, in
constructive mathematics [. . .] the computational procedures are
normally left implicit in the proofs [. . .].

Constructive mathematics find their origins, at the beginning of
20th century, with the criticisms of the formalist mathematical point
of view developed by Hilbert which led towhat we now call “classical
mathematics”. Brouwer was the most radical opponent to formal
mathematics in which one can prove the existence of a mathemat-
ical object without providing a way (an algorithm) to construct it
[23]. But his metaphysical approach to constructivism (intuitionism)
was not successful. Around 1930, the first who tried to define an ax-
iomatization of constructive mathematics was Arend Heyting, a stu-
dent of Brouwer. In the mid of the fifties, he published a treaty [24]
were intuitionism is presented to bothmathematicians and logicians.
From Heyting's works it became clear that constructive mathematics
is intuitionistic-logic based mathematics, i.e. classical (usual) logic
where the law of the excluded middle (A ∨ ¬A), or equivalently the
Reductio ad absurdium (suppose ¬A and deduce a contradiction) or
the double negation law (from ¬¬A we can derive A) are not al-
lowed. The idea of Heyting was to define the meaning (semantic)
of formulae by the set of its proofs. This interpretation of formulae
have in its sequels the rejection of the law of the excluded middle
otherwise we would have a universal method for obtaining a proof
of A or a proof of ¬A for any proposition A. This idea, referred in the
literature as BHK-interpretation [23], gives the way to link construc-
tive mathematics with programming by the equivalence:

proof = term = program

theorem = type = specification

This is the Curry–Howard correspondence which leads [7], via typed
lambda-calculus, to a new programming paradigm [6,8,21,25]; rather
than write a program to compute a function one would instead prove
a corresponding theorem and then extract the function from the
proof. Examples of such systems are Nuprl [25] and Coq [21].

From the constructive mathematical point of view, as developed
by Bishop [15], the algorithmic processes are usually left implicit in
the proofs. This practice is more flexible but requires some work to
obtain a form of the proof that is computer-readable.

One of the common remarks about NSA is that this theory is
deeply nonconstructive. However, from the practical point of view,
NSA has undeniable constructive aspects. This is particularly true for
the Harthong–Reeb line as Reeb himself explained [13]. The arith-
metization of the Euler scheme, that led to the Reveillès discrete
straight line definition, is a good illustration of this aspect. In this
work, we will consolidate this impression by showing that the sys-
tem HR� verifies the constructive axiomatic proposed by Bridges
and Reeves [8,26].

4.2. A special logical framework for HR�

From the definitions stated in the description of HR�, we no-
tice that a decision about the relations >� and =� needs a kind of
infinite search in the whole class of limited natural numbers. Con-
sequently, there is a great difference about the derived properties in
our system depending on whether we follow classical or intuitionis-
tic logic. Actually, we will use the following rules about the integers
and the underlying logic of our reasoning:

LR1. For each X ∈ Z, we have (0 >X) or (X = 0) or (X >0), even if X is
not limited.

LR2. The limited integers are identified with the usual constructive
integers.

LR3. We only use intuitionistic logic.

As a consequence, for each X,Y ∈ HR� we immediately see that

(i) (X ��Y) �⇒ ¬(X=�Y),
(ii) (X ��Y) ⇐⇒ (∃limn ∈ N n|X − Y|��),

but the reverse of (i) is not true in general; similarly, for every X,Y ∈
HR� we have not in general (X>�Y)∨ (X=�Y)∨ (Y>�X). Following
[8,26], we define the relation �� only in term of >�.

Definition 6. Let us consider X,Y ∈ HR�. Then X��Y if and only if

∀Z ∈ HR�(Y>�Z �⇒ X>�Z)

Proposition 7. Let us consider X,Y ∈ HR�. Then,

((X>�Y) ∨ (X=�Y)) �⇒ X��Y

Proof. Let Z ∈ HR� such that Y>�Z: ∃limn ∈ N n(Y − Z)��.

• If X>�Y , then ∃limm ∈ N m(X−Y)��. Then, p(X−Z)�� for p :=
max(m,n) and consequently X>�Z.

• If X=�Y , then ∀limm ∈ N ��m(X − Y)� − �. Hence

2n(X − Z) = 2n(X − Y) + 2n(Y − Z)� − � + 2� = �. �

Again, the reverse implication is not true in general. Nevertheless:

Proposition 8. For every X,Y ∈ HR�, the following conditions are
equivalent:

(1) X��Y;
(2) (X�Y) ∨ (X=�Y);
(3) ∀limn ∈ N ��n(Y − X).

Proof. We suppose (1). If X�Y , we have nothing to do. Thus, we
suppose that Y >X. For each limited p ∈ N, we consider Zp := Y −
��/p� inHR�. We have Y−Zp��/p−1 and then (p+1)(Y−Zp)� (p+
1)�/p − (p + 1)�� because ��p(p + 1). Hence Y>�Zp from which
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we get X>�Zp and also X > Zp. Consequently, Y >X > Zp and, for each
limited n ∈ N, we have

n|X − Y| = n(Y − X)�n(Y − Zp)�n��/p��
n
p
�.

Choosing p = n, we get n|X − Y|�� for every limited n.

• We suppose (2). If X�Y , then for every limited n ∈ N, we have
��0�n(Y − X). If Y >X then X=�Y and for every limited n ∈ N,
we have n(Y − X) = n|Y − X|��.

• We suppose (3) and we consider Z ∈ R� such that Z<�Y . Hence,
there is a limited k ∈ N such that k(Y − Z)��. Since n(Y − X)��
for every limited n ∈ N, we have

X − Z = (X − Y) + (Y − Z)� − �
n

+ �
k
.

Choosing n = 2k, we get 2k(Y − Z)��. �

4.3. HR� satisfies the axiomatic of bridges

In [8,26], Bridges introduced an abstract structure which is a
constructive axiomatic presentation of the real line. Let us call a
Bridges–Heyting ordered field any system which satisfies these ax-
ioms. The main result of our work is the following theorem:

Theorem 9. (HR�,+�,×�,=�, >�) is a Bridges–Heyting ordered
field.

Since we only use the logical rules (LR1), (LR2) and (LR3),
this result shows that the Harthong–Reeb line is partially construc-
tive in a non-trivial way.2 To prove it, we show that the system
(HR�,+�,×�,=�, >�) satisfies the three groups of axioms (R1),
(R2) and (R3) defined by Bridges.

R1. HR� is a Heyting field: ∀X,Y , Z ∈ HR�,

(1) X+�Y=�Y+�X.
(2) (X+�Y)+�Z=�X+�(Y+�Z).
(3) 0�+�X=�X.
(4) X+�(−�X)=�0�.
(5) X×�Y=�Y×�X.
(6) (X×�Y)×�Z=�X×�(Y×�Z).
(7) 1�×�X=�X.
(8) X×�X(−1)�=�1� if X ��0�.
(9) X×�(Y+�Z)=�X×�Y+�X×�Z.

Proof. Since +� is the same as the classical +, the properties (1),
(2), (3) and (4) are verified.

(5) X×�Y = �XY/�� = �YX/�� = Y×�X=�Y×�X.
(6) From the definition, we get (X×�Y)×�Z = ��X.Y/��Z/��. Using

several times the decomposition U = �U� − {U} with 0��U� <1,
we obtain

(X×�Y)×�Z =
⌊
XYZ
�2

⌋
+
{
XYZ
�2

}
−
{
XY
�

}
Z
�

−
{⌊

X.Y
�

⌋
Z
�

}
Since Z ∈ HR�, there is a limited n ∈ N such that |Z|�n�.
Hence, we have∣∣∣∣{XYZ�2

}
−
{
XY
�

}
Z
�

−
{⌊

X.Y
�

⌋
Z
�

}∣∣∣∣ �n + 2

2 For instance, our proof shows that the system HR� does not satisfy Bridges's
axioms in the same trivial way than the classical set R of real numbers.

and thus, (X×�Y)×�Z)=��XYZ/�2�. A similar treatment gives
X×�(Y×�Z)=��XYZ/�2�.

(7) 1�×�X = �×�X = ��X/�� = �X� = X=�X.
(8) X×�X(−1)� = �X(�2/X)/�� = ��� = � = 1�.
(9) The definitions lead to

X×�(Y+�Z) =
⌊
X.Y + X.Z

�

⌋
and also to

X×�Y+�X×�Z =
⌊
XY
�

+ XZ
�

⌋
+
{
XY
�

+ XZ
�

}
−
{
XY
�

}
−
{
XZ
�

}
Since |{XY/� + XZ/�} − {XY/�} − {XZ/�}|�3, we get the
result. �

R2. Basic properties of >� : ∀X,Y , Z ∈ HR�,

(1) ¬(X>�Y ∧ Y>�X)
(2) (X>�Y) ⇒ ∀Z(X>�Z or Z>�Y)
(3) ¬(X ��Y) ⇒ X=�Y
(4) (X>�Y) ⇒ ∀Z(X+�Z>�Y+�Z)
(5) (X>�0� ∧ Y>�0�) ⇒ X×�Y>�0�

Proof. (1) The definition of X>�Y implies X >Y . Thus, starting with
X>�Y and Y>�X, we get (X >Y and Y >X) which is a contradiction for
the usual rules on the integers.

(2) We know that there is a limited n ∈ N such that n(X−Y)��.
Thus, for Z ∈ HR�, we get n(X−Z)+n(Z−Y)��. Hence, 2n(X−Z)��
or 2n(Z − Y)��. 3

(3) Let us recall that¬(X ��Y) is equivalent to¬((X>�Y)∨(Y>�X)).
We suppose that the existence of a limited n ∈ N such that n(X −
Y)�� or n(Y − X)�� leads to a contradiction. Let k ∈ N be an
arbitrary limited number; since (k|X−Y| <�)∨ (k|X−Y|��), we get
k|X − Y| <�.

(4) We suppose that there exists a limited n ∈ N such that n(X −
Y)��. Hence, for every Z ∈ HR� we have n((X + Z)− (Y + Z))��.

(5) We suppose that there are limited n,m ∈ N such that
nX�� and mY��. Hence, mnX×�Y = mn�XY/�� = mnXY/� −
mn{XY/�}�� − mn��/2. Thus, 2mnX×�Y��. �

Before dealing with the third group of axioms, let us recall that
we identify the constructive integers with the limited ones. As usual
in a Heyting field, we embed the constructive integers in our system
by the map n�n×�1� = n� of HR�. A subset S of HR� is the
collection of elements of HR� which satisfies a given property
defined in the system. This property may be internal or external.
Such a subset S is bounded above relative to the relation �� if there
is b ∈ HR� such that b��s for all s ∈ S; the element b is called an
upper bound of S. A least upper bound for S is an element b ∈ HR�
such that

• ∀s ∈ S b��s (b is an upper bound of S);
• ∀b′(b>�b′) ⇒ (∃s ∈ S s>�b′).

A least upper bound is unique: if b and c are two least upper bounds
of S, then we have ¬(b>�c) and ¬(c>�b); thus, according to the
properties4 of the relations >�, �� and =�, we get c��b and
b��c and then b=�c.

3 If k, l and m are integers such that k + l�m, then 2max(k, l)�m. Since this
is only a question of sign of integers, this property is decidable in our framework.

4 These properties are not completely trivial in intuitionistic logic.
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R3. Special properties of >�:

(1) Axiom of Archimedes: For each X ∈ HR� there exists a construc-
tive n ∈ Z such that X <n.

(2) The constructive least-upper-bound principle: Let S be a non-
empty subset of HR� that is bounded above relative to the
relation ��, such that for all �,� ∈ HR� with �>��, either �
is an upper bound of S or else there exists s ∈ S with s>��; then
S has a least upper bound.

Proof. (1) Since HR� = {X ∈ Z; ∃limn ∈ N|X| <n�}, the first point is
clear.

(2) The pattern or our proof follows the heuristic motivation given
by Bridges in [26]. We choose an element s0 of S and an upper
bound b′

0 of S in HR�. Then, we consider the new upper bound
b0 := b′

0 + 1� of S so that s0<�b0. We define �0 := 2
3 s0 + 1

3b0 and
�0 := 1

3 s0 + 2
3b0. Since s0<�b0, we also have �0<��0. According to

the hypothesis relative to the set S, two cases occur.

• First case: �0 is an upper bound of S. Therefore, we define s1 := s0
and b1 := �0.

• Second case: there is s ∈ S such that �0<�s. Then, we define s1 := s
and b1 := b0 + s − �0. 5

In each case, we get an element s1 of S and an upper bound b1 of
S such that min0� k�1bk� s1� s0 and b1 − s1=�

2
3 (b0 − s0). Accord-

ing to the external inductive defining principle, there is an internal
sequence (sk, bk)k∈N in Z2 such that, for all limited n ∈ N, we know
that sn ∈ S, bn is an upper bound of S and

min
0� k�n

bk� sn� · · · � s1� s0 and bn − sn=�

(
2
3

)n

(b0 − s0)

where the function min is relative to the usual order relation � on
Z. Hence, from the overspill principle we can deduce the existence
of an infinitely large number � ∈ N, such that

min
0� k� �

bk� s� � · · · � s1� s0

Then, we consider the element b := min0� k� �bk of HR� and we
want to show that b is a least upper bound of S.

• Given any element s ∈ S, we know that the property b��s is
constructively equivalent to ¬(s>�b). If we suppose that s>�b, we
can find a limited n ∈ N such that s− b>�bn − sn. Since bn�b� sn,
we have s−b>�bn − sn�bn −b and thus s−b>�bn −b which leads
to the contradiction s>�bn. Hence, b��s.

• Given b>�b′, we can choose a limited n ∈ N such that b−b′>�bn −
sn. Thus, we have also b − b′ > bn − sn and bn�b� sn�b′. As a
consequence, (b − sn) + (sn − b′)>�bn − sn�b − sn so that sn>�b′.
Hence, we have find an element s of S such that s>�b′. �

5. Conclusion

In this paper, we recalled the origins of the discrete analytical
geometry developed by Reveillès. An important tool of this approach
is the use of the Harthong–Reeb line, HR�, which is a nonstandard
model of the continuum based on integers. In the present work, we
introduced a suitable version ofHR� which is characterized by the
use of a partly intuitionistic logic and a weak axiomatic version of
NSA. Then, we showed that this systemHR� satisfies the axiomatic

5 In classical logic, it would be better to put b1 := b0 and then to introduce an
equality test between s1 and b1; but this test is not constructively valid.

of a constructive real line defined by Bridges. As a consequence, we
can say that HR� is constructive to some extent.

On the one hand, this property is surprising because NSA is gen-
erally thought as deeply non-constructive. According to this view,
the typical nonstandard entities (like the nonstandard numbers)
are basically non-constructive, as fictitious as non-measurable set
of Lebesgue theory or as the axiom of choice of set theory. Con-
sequently, theses entities would be nothing else that some non-
essential artefacts of our formalism [27,28].

On the other hand, this result reflects the constructive aspects
of the practice of NSA. Harthong and Reeb explain in [29] that, far
from being an artefact, NSA necessarily results of an intuitionistic in-
terpretation of the classical mathematical formalism (see also [30]).
Moreover, some strange structural similarities have been noted be-
tween nonstandard and constructive proofs [31]. Finally, thanks to
the works of Martin-Löf [32], Moerdijk [33] and Palmgren [34,35],
there are now new presentations of NSA which completely fit with
the constructive constraints. Actually, our study is completely in-
dependent of these last developments, mainly because we remain
within the framework of an usual axiomatic which is just a weak-
ening of the theory IST of Nelson [36].

Regarding to the Harthong–Reeb line HR�, we believe that the
constructive content of this system is measured by the constructive
quality of our logical framework defined by the three rules (LR1),
(LR2) and (LR3). In this connection, the rule (LR3) is perfect and the
rule (LR2) is not problematic. Conversely, the lack of constructivity
of this system should also be read in this special logical context:
it is clear that the combination of the rules (LR1) and (LR2) is not
completely satisfactory because it is only for the usual integers that
the relation = and > are unquestionably decidable. The weakness
of our point of view may also be localized in the purely axiomatic
introduction of the infinitely large numbers like � which do not have
a specific computational content.

As a consequence, our system HR� is not completely construc-
tive and we are far from being able to bring any proof from our sys-
tem into a concrete program. In other works yet to come, we plan to
investigate some more constructive versions of the Harthong–Reeb
line. Our long term goal is to get a “correct” discrete and constructive
model of the continuum. To this end, we intend to use the idea of
Laugwitz and Schmieden on infinitely large natural numbers [37–39]
and the framework of Martin-Löf type theory [6,32,40]. If we suc-
ceed, we hope that it may be possible, following ideas such as the
arithmetization of the Euler scheme, to shed a new light on some
differential notions in discrete geometry. The present work presents
only the very first step towards this goal.

References

[1] J. Harthong, Éléments pour une théorie du continu, Astérisque 109/110 (1983)
235–244.

[2] J. Harthong, Une théorie du continu, in: H. Barreau, J. Harthong (Eds.), La
mathématiques non standard, Éditions du CNRS, 1989, pp. 307–329.

[3] J.-P. Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique,
Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France, 1991.

[4] J.-P. Reveillès, D. Richard, Back and forth between continuous and discrete
for the working computer scientist, Annals of Mathematics and Artificial
Intelligence, Mathematics and Informatic 16 (1–4) (1996) 89–152.

[5] E. Bishop, D. Bridges, Constructive Analysis, Springer, Berlin, 1985.
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